中医健康网

糖尿病新机制(糖尿病新机制好大夫)

中国青年报 0
文章目录:

科学家揭示糖尿病传代“记忆”新机制

中国青年报客户端讯(中青报·中青网记者李剑平)北京时间5月18日,浙江大学一项成果在国际顶级期刊《自然》在线发表。该成果找到了糖尿病的代际传播新机制,为人类认识和防控糖尿病等成年慢性疾病提供了最新的科学视角。

该研究由浙江大学医学院附属妇产科医院黄荷凤院士与中国科学院分子细胞科学卓越创新中心徐国良院士团队合作,研究中首次揭示了糖尿病的卵母细胞起源,即母体不良环境可以通过卵母细胞影响子代糖代谢功能,并阐明了其表观遗传调控机理。

教育部生殖遗传重点实验室和浙江大学医学院附属邵逸夫医院陈宾博士、中科院分子细胞科学卓越创新中心杜雅蕊副研究员、复旦大学附属妇产科医院朱虹博士、中科院分子细胞卓越创新中心孙美玲博士和王超博士为共同第一作者。共同通讯作者为黄荷凤院士和徐国良院士。参加这项研究的单位有浙江大学、复旦大学、中国科学院、上海交通大学、中国科学院大学和英国阿尔斯特大学,浙江大学为论文第一单位。

对糖尿病的治疗,通常是通过胰岛素来控制血糖的增高,缓解糖尿病引起的各种并发症。但如何预防糖尿病的发生一直困扰着科学界和医学界,从生命早期找到疾病起源进行早期干预已成全球研究的热点。黄荷凤院士是一名妇产科医生,在一次次诊疗后,她常常思考母亲对子代会产生什么样的影响?为此,她带领团队致力于开展母体不良环境因素导致的子代成人疾病研究,发现高糖/高雄激素等不良因素暴露能够通过改变宫内胚胎/胎儿DNA甲基化谱式,或者通过影响精子/卵子表观修饰而引起慢性疾病的代间/代际遗传。

浙江大学团队与徐国良院士课题组展开深入合作,进一步证实由于糖尿病雌鼠体内的高糖环境,让卵母细胞中具有重编程DNA甲基化谱式功能的TET3蛋白剂量不足,进而使得TET3在受精后进入雄原核中推动重编程的潜能不足,导致“去甲基化不足”或 “高甲基化”。这好比原来有十个农民耕地(TET3介导氧化去甲基化),现在少了一部分人(TET3不足),很多地就没有开垦完全(DNA甲基化重编程未完全),影响未来的收成(子代健康受到影响)。

针对这项研究,《自然》同期配发了瑞士弗里德希-米斯科舍生物医学研究所Antoine H. F. M. Peters的评述。美国科学院院士Marisa Bartolomei和美国国家生殖表观基因学研究中心主任Wei Yan教授在《生殖生物学》(Biology of Reproduction)杂志上为该工作撰写评论。

“这个研究的结果,为我们对慢病的源头防控提供了变革性思路,从发育源头,配子发生阶段防控慢病,降低出生缺陷、提高我国人口健康水平提供了全新视角和策略。”黄荷凤院士说,针对糖尿病、高血压常在家族中聚集发生的现象,未来也要注意生殖环境所致的传代作用,在关心自己本身健康的同时,还有一个意义要保护她(他)的下一代。

浙江大学 供图

来源:中国青年报客户端

揭示糖尿病的传代“记忆”机制 浙大成果登《自然》

研究机制图。 受访团队提供

研究机制图。 受访团队提供

中新网杭州5月19日电(童笑雨 柯溢能)5月19日,记者从浙江大学(下称“浙大”)获悉,浙江大学医学院附属妇产科医院名誉院长黄荷凤课题组和中国科学院分子细胞科学卓越创新中心的徐国良团队合作,找到了糖尿病的代际传播新机制。

5月18日,该项成果在国际顶级期刊《自然》上在线发表。该成果为人类认识和防控糖尿病等成年慢性疾病提供了最新的科学视角。

针对一些慢性疾病,过去常用的方法是对症治疗。如对糖尿病的治疗,通常是通过胰岛素来控制血糖的增高,缓解糖尿病引起的各种并发症。

如何预防糖尿病的发生,一直困扰着科学界和医学界,如何从生命早期找到疾病起源并进行早期干预,已成为全球研究的热点。

作为一名妇产科医生,黄荷凤也常常在思考这个问题:母亲对子代会产生什么样的影响?为此,她带领团队开展母体不良环境因素导致的子代成人疾病研究。

结合临床流行病学调查和动物模型的研究成果,黄荷凤认为糖尿病和高血压这些成年的慢性疾病都存在发育起源性,因此率先在国际上提出了“配子源性成人疾病”学说。

然而该学说一直未得到有效的证明。为了证实这一假说,黄荷凤团队开始关注以下科学问题:怀孕之前的母体不良环境是否会影响子代健康?以育龄妇女高发的糖尿病为例,母亲高血糖是否会通过卵母细胞增加子代慢性疾病的风险?

为此,研究团队建立了雌性小鼠糖尿病模型。为了排除高血糖对胚胎和胎儿发育的持续影响,研究者将受影响的卵母细胞取出进行体外受精和胚胎移植,由健康雌鼠代为孕育和哺育。同时,他们对子代进行代谢检测,结果显示子代小鼠显现了糖耐量受损。

这些结果说明,卵母细胞受到高血糖不良环境的影响,增加了后代成年慢性疾病的易感性。

针对这一发现,研究团队开始思考:什么是增加子代糖尿病易感性的“元凶”?

在开展一系列复杂实验后,浙大团队找到了一把关键钥匙——DNA去甲基化酶TET3。

为此,浙大团队与徐国良课题组展开深入合作。两个团队合作证实,糖尿病雌鼠体内的高糖环境,让卵母细胞中具有重编程DNA甲基化谱式功能的TET3蛋白剂量不足,进而使得TET3在受精后进入雄原核中推动重编程的潜能不足,导致“去甲基化不足”或“高甲基化”。

这就好比原来有十个农民耕地,现在少了一部分人,很多地就没有开垦完全,影响未来的收成,即子代健康受到影响。

那么TET3又是通过什么样的机制,增加子代糖尿病易感性的?

研究证明,子代胰岛中Gck等基因的高甲基化和低表达导致了胰岛素分泌不足以及降血糖能力的下降,随着年龄的增长,便增加了糖尿病的易感性。

据悉,这个研究在临床上也得到了证实。

黄荷凤表示,该研究成果的创新之处在于,以孕前糖尿病为切入点,对环境作用于卵母细胞诱发子代成年疾病的现象进行了求证,并发现了卵母细胞TET3不足介导子代慢性疾病发生的具体调控机制。

“这个结果,为慢病的源头防控提供了变革性思路,为提高中国人口健康水平提供了全新视角和策略。”黄荷凤说。

据悉,参加这项研究的单位有浙大、复旦大学、中国科学院、上海交通大学、中国科学院大学和英国阿尔斯特大学,浙大为论文第一单位。(完)

研究发现脯氨酸羟基化修饰调控2型糖尿病的新机制

中国科学院上海营养与健康研究所、西南医科大学附属医院和青岛大学合作,首次解析脯氨酸羟基化修饰调控2型糖尿病进展的新机制,揭示了脯氨酸羟化酶3(PHD3)通过羟基化增加糖异生关键转录因子CRTC2的核定位与活性,进而增加肝脏糖异生基因表达和葡萄糖产生。相关研究成果在线发表在《美国国家科学院院刊》(PNAS)上。

肝脏是重要的内分泌器官。肝脏糖代谢在维持机体血糖稳态中扮演着重要角色。肝脏糖异生过度增加是导致高血糖和2型糖尿病的重要原因。胰高血糖素的分泌会通过激活PKA通路和增加CREB的磷酸化来促进CREB与其转录辅因子CRTC2的结合,进而促进糖异生关键限速酶PEPCK和G6Pase的表达,增加糖异生水平。脯氨酸羟化酶PHD3能够通过感应氧气含量的变化来调节缺氧诱导因子HIF的羟基化水平,从而影响其活性。然而,PHD3能否感应机体其他生理状态变化并调控机体葡萄糖代谢与血糖稳态尚不清楚。

为探究PHD3是否能够感应机体能量的变化,研究人员检测了正常饲喂和禁食状态下小鼠肝脏中PHD3的蛋白水平,发现禁食能显著增加PHD3的蛋白表达。研究利用PHD3肝细胞特异性敲除小鼠,分别进行禁食和高脂高蔗糖饮食喂养发现,无论是在禁食的生理状态还是肥胖的病理状态下,PHD3肝细胞特异性敲除均能降低小鼠肝脏中糖异生关键酶的表达水平和减少葡萄糖生成。为了探究PHD3的作用是否通过其羟化酶活性来发挥,研究进一步构建了PHD3肝细胞羟化酶活性缺失的基因敲入(KI)小鼠模型,得到和PHD3肝细胞特异性敲除小鼠一致的结果,表明PHD3参与糖异生的调控过程依赖其羟化酶活性。进一步的机制研究发现,PHD3通过羟基化CRTC2的Pro129和Pro625位点,促进CRTC2与CREB结合,增加CRTC2的核转位与转录活性,从而增加糖异生基因转录和葡萄糖生成。此外,CRTC2 Pro615位点的羟基化水平在禁食小鼠、ob/ob肥胖的糖尿病小鼠、糖尿病病人肝脏组织中均显著增加,这表明在生理和病理条件下,PHD3介导的CRTC2羟基化修饰可能在小鼠及人的血糖稳态调控中均发挥重要作用。

研究显示,糖异生关键转录因子CRTC2是PHD3新的下游底物,羟基化修饰增强了CRTC2的核转位与活性,从而增加糖异生基因的表达和肝糖输出。同时,该研究表明抑制肝脏PHD3或CRTC2羟基化可能是治疗高血糖和2型糖尿病的新策略。蛋白质翻译后修饰与2型糖尿病等代谢性疾病的发生和发展密切相关。李于研究组此前发现,AMPK通过磷酸化修饰脂质合成代谢关键因子Insig和SREBP,抑制肝脏脂质过度合成和非酒精性脂肪肝。上述研究揭示了蛋白翻译后修饰关键酶(如PHD3和AMPK)调节糖脂代谢紊乱的分子机制,为防治2型糖尿病和脂肪肝等代谢性疾病提供新的思路和治疗手段。

研究工作得到国家重点研发计划、国家自然科学基金、上海市市级科技重大专项、代谢性血管疾病四川省重点实验室开放课题、山东省自然科学基金、中国博士后科学基金的资助,并获得营养与健康所公共技术中心的支持。

PHD3通过非经典的CRTC2羟基化修饰激活肝糖异生模式图。在禁食或胰高血糖素刺激条件下,PHD3结合并羟基化CRTC2的Pro129和Pro615位点,导致CRTC2的核转位和CREB/CRTC2途径激活,促进糖异生基因表达和肝糖输出。CRTC2羟基化是一种非经典的CRTC2翻译后修饰,独立于经典的CRTC2磷酸化修饰对肝脏糖异生的调控。

来源:中国科学院上海营养与健康研究所